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Cyclopropanation Transition States. The Electronic 
Effect 

Sir: 

The stereochemistry of olefin cyclopropanation by car-
benes and carbenoids has been a particularly active topic 
for the past several years.1 Possible influences include elec­
tronic effects,1-2 steric effects,lb and specific complexation 
effects involving metal ions3 or substituted olefins.4 Elec­
tronic effects have been attributed to dispersion forces,5 sec­
ondary electrostatic interactions,6'7 or, more generally, sec­
ondary electronic interactions viewed in molecular orbital 
terms.8 These suggestions are based on experiments involv­
ing unsymmetrical carbenes or carbenoids in which the two 
groups differ in size as well as electronics. Only if one as­
sumes a very early transition state, can steric differences be 
ignored. Such an assumption is probably justified in Closs's 
substituent work on the reactive monoarylcarbenes6 and 
monoarylcarbenoids,6-9 but the endo-aryl and endo-hydro-
gen transition states probably occur at different separation 
distances which could change electronic effect magnitudes. 
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Figure 1. <r+ p plot of diarylcarbenoid cyclopropanation stereoselectiv­
ity at 0 °C. 

We felt that examining the effect of para substitution on 
diarylcarbenoid and diarylcarbene cyclopropanations would 
clarify the electronic effect since the transition states lead­
ing to 1 (Ar endo) and 2 (Ph endo) should occur at the 
same carbene-olefin separation distance and would there­
fore have the same steric hindrance between the endo-group 
and the olefin substrate. Furthermore, the low reactivity of 

^J + AKPh)CN2 

Ar 
other 
products 

K Ar endo) 2 (Ph endo) 

the diaryl species implies a relatively product-like transition 
state with only small carbene-olefin separation10 where 
both steric and electronic effects might be maximized. The 
appropriate diaryldiazomethanes were added to cyclopenta-
diene in the usual fashion" using both zinc chloride cataly­
sis and Pyrex filtered irradiation. Reverse-phase high pres­
sure liquid chromatography12 allows analytical separation 
of the isomeric olefin products13 without fear of isomeriza-
tion so that reliable kinetic stereoselectivities can be ob­
tained. The stereochemistry of the 6,6-diarylbicyclo-
[3.1.0]hex-2-enes (1) and (2) can be determined by applica­
tion of europium shift reagents1415 to the hydroboration de­
rived 6,6-diarylbicyclo[3.1.0]hexan-3-ejco-ols. 

The results for both the carbene and carbenoid reactions 
are shown in Table I. Note that in all cases the major prod-

Table I. Substituent Effects on Diarylcarbene and Diarylcarbenoid Reactions 

Ar(Ph)CN2 

P-C6H4CN 

P-C6H4Br 

Ph d 

Ph<* 
Ph<* 
P-C6H4CH3 

P-C6H4OCH3 

Conditions (°C) 

ZnCl2 (25) 
ZnCl2 (0 -5 ) 
hv (0 -5 ) 
ZnCl2 (25) 
ZnCl2 (0 -5 ) 
hv (0 -5 ) 
ZnCl2 (25) 
ZnCl2 (0 -5 ) 
Ay (0 -5 ) 
ZnCl2 (25) 
ZnCl2 (0 -5 ) 
hv (0 -5 ) 
ZnCl2 (25) 
ZnCl2 (0 -5 ) 
hv (0 -5 ) 

Cyclopropane 

37 
9 

32 
31 
21 
25 
35 
23 
19 
12 
20 
14 
11 

5 
15 

A r e n d o / A r exo 

1/2.5 
1/4.5 
1/3.2 
1/3.5 
1/3.6 
1/3.5 

2/1 
3/1 
1.1/1 

> 2 0 / l « 
> 2 0 / l * 
S 2 0 / 1 * 

Benzophenone 

15 
20 
20 
68 
17 
26 
29 
15 
25 

5 
24 
35 
46 
47 
21 

Ketazine6 

35 
50 

4(24)c 
5 

24 
(25K 

24 
51 

1 (36K 
60 
25 
20(10)c 
10 
30 

(22)c 
a Isomer ratio determined by recycling reversed phase HPLC with 254-nm detector. * Ketazine = tetraarylketazine. c Yield of 1,1,2,2,-tetra-

aiylethane.dFrom ref 8. 6No second isomer could be seen by NMR or recycling HPLC on the crystalline isomer mother liquors. We 
estimate a maximum of 5% of a second isomer could be present. 
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Table II. o+ p Results for Carbenoid Cycloptopanation 
Stereoselectivity 

System 

Ar(Ph)CN2 + ZnCL2 + cyclopentadiene 
Ar(Ph)CN2 + ZnCl2 + cyclopentadiene 
Ar(Ph)CN2 + hv + cyclopentadiene 
ArCHLiBr + c/s-2-butene 
ArCHN2 + hv + a's-2-butene 
ArCHN2 + ZnCl2 + 1,4-butadiene 

ArCHN2 + ZnCl2 + cyclohexene 

Iemp, °C 

0 
25 

0 
- 1 0 
- 1 0 
- 1 0 

- 1 0 

Pa 

-1 .45 
-1 .23 
-1.24 
-0.35 (ref 6b) 
-0 .35 (ref 6b) 
-0 .46 (ref 9, 

2 pts 
-1 .3 (ref 9, 2 

2 pts only) 
a Represents a least-squares fit to the data. 

uct has the electron rich aryl group endo to the 5-ring, the 
carbenoid results are temperature dependent, the electron 
donating groups have generally lower cyclopropane yields, 
and the stereoselectivities of the carbene and carbenoid are 
quite similar. 

A plot of log (isomer ratio)16 vs. <r+ (Figure 1) gives a 
fairly good correlation with some deviation for the electron 
deficient substituents and a p = —1.45 for the carbenoid re­
action at 0 0C. In the transition state, the electron deficient 
carbene lobe is clearly conjugated with the electron rich 
aryl ring and little rehybridization and mixing with the 
electron rich lobe has occurred. We have made similar plots 
of Closs's data6,9 for comparison purposes (Table II), and 
find that the more reactive monoarylcarbenoids show simi­
lar behavior but are much less perturbed by the substituents 
as one would expect for relatively earlier transition states. 
Only for the unreactive cyclohexene which has the steric 
problem of ring methylene groups does the monoarylcarbe-
noid show electron demand similar to the diarylcarbenoid. 

Although the surprising similarity of the diarylcarbene 
and diarylcarbenoid stereoselectivities could be merely for­
tuitous, the weight of the data suggests that some common 
mechanistic features occur. One possibility is that the actu­
al cyclopropanation transition state represented here by 
structures 3 and 4 is very similar for both reactions.17 We 

note that the model 3 suggested by electrostatic theory6'7 

correctly predicts for both cases that the more electron rich 
endo-aryl group controls the stereochemistry through sec­
ondary interactions in the major transition state. The corre­
lation for electron withdrawing groups is poor because the 
unsubstituted phenyl ring is endo in the predominant transi­
tion state, and the lack of correlation with a+ for the phenyl 
moiety indicates that some orbital mixing and rehybridiza­
tion is occurring in these cases. Model 4 better represents 
the disposition of orbitals in the transition state. 

One could imagine that these relatively late transition 
states are so stabilized by resonance donation from the rings 

and by secondary interactions with the diene substrate, that 
nearly all "memory" of the precursors has been lost.18 We 
note that the methyl system which is least able to provide 
resonance stabilization shows the greatest stereoselectivity 
difference. Moss's results on phenyl-halo carbenes21 led 
him to speculate that carbenoid and carbene selectivities 
tend to become more similar as the species become more 
stable. Although our reasoning is different,22 our results 
support this generalization. A more detailed discussion of 
the mechanistic problems involved in equating transition 
states derived from diarylcarbenoids and triplet diarylcar-
benes must wait for the full paper. We are continuing our 
investigations of the details of cyclopropanation transition 
states. 
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